Subcribe to our RSS feeds Join Us on Facebook Follow us on Twitter Add to Circles



Aku benci menulis, tapi kebencian tak boleh dipelihara

Pembangkit Listrik Tenaga Uap (PLTU)

Pembangkit Listrik Tenaga Uap (PLTU)

A. Pembangkit Listrik Tenaga Uap
Pembangkit Listrik Tenaga Uap di Indonesia yang pertama kali dibangun adalah di Suryalaya pada tahun1984 dengan kapasitas terpasang 4 x 400 MW. Kemudian PLTU Bukit Asam dengan kapasitas 2 x 65 MW pada tahun 1987. Dan pada tahun 1993-an beroperasi pula PLTU Paiton 1 dan 2 masing-masing dengan kapasitas 400 MW. Kemudian PLTU Suryalaya akan dikembangkan dari unit 5 - 7 dengan kapasitas 600 MW/unit. PLTU batu bara pada tahun 1994 kapasitasnya sudah mencapai 2.130 MW (16 persen dari total daya terpasang). Pada tahun 2003 kapasitasnya diperkirakan sekitar 12.100 MW (37 persen ), tahun 2008/09 mencapai 24.570 MW (48 persen ) dan pada tahun 2020 sekitar 46.000 MW. Sementara itu pemakaian batu bara pada tahun 1995 tercatat bahwa untuk menghasilkan energi listrik sebsar 17,3 Twh dibutuhkan batu bara sebanyak 7,5 juta ton. Dan pada tahun 2005 pemakaian batu bara diperkirakan mencapai 45,2 juta ton dengan energi listrik yang dihasilkan mencapai 104 Twh.
Banyaknya pemakaian batu bara tentunya akan menentukan besarnya biaya pembangunan PLTU. Harga batu bara itu sendiri ditentukan oleh nilai panasnya (Kcal/Kg), artinya bila nilai panas tetap maka harga akan turun 1 persen pertahun. Sedang nilai panas ditentukan oleh kandungan zat SOx yaitu suatu zat yang beracun, jadi pada pembangkit harus dilengkapi alat penghisap SOx. Hal inilah yang menyebabkan biaya PLTU Batu bara lebih tinggi sampai 20 persen dari pada PLTU minyak bumi. Bila batu bara yang digunakan rendah kandungan SOx-nya maka pembangkit tidak perlu dilengkapi oleh alat penghisap SOx dengan demikian harga PLTU batu bara bisa lebih murah. Keunggulan pembankit ini adalah bahan bakarnya lebih murah harganya dari minyak dan cadangannya tersedia dalam jumlah besar serta tersebar di seluruh Indonesia.

B. Komponen Utama PLTU
PLTU merupakan mesin pembangkit termal yang terdiri dari komponen utama dan komponen bantu (sistem penunjang) serta sistem-sistem lainnya. Komponen utama terdiri dari empat komponen, yaitu:
1. Boiler (ketel uap)
Boiler adalah suatu perangkat mesin yang berfungsi untuk merubah air menjadi uap. Proses perubahan air menjadi uap dilakukan dengan memanaskan air yang berada didalam pipa-pipa dengan panas hasil pembakaran bahan bakar. Proses pembakaran dilakukan secara kontinyu didalam ruang bakar dengan mengalirkan bahan bakar dan udara dari luar.
Uap yang dihasilkan adalah uap superheat dengan tekanan dan temperatur yang tinggi. Jumlah produksi uap tergantung pada luas permukaan pemindah panas, laju aliran, dan panas pembakaran yang diberikan. Boiler yang konstruksinya terdiri dari pipa-pipa berisi air disebut dengan water tube boiler (boiler pipa air).
Boiler (ketel uap)
Dalam pengoperasiannya, boiler ditunjang oleh beberapa peralatan bantu seperti economizer, ruang bakar, dinding pipa, burner, steam drum, superheater dan cerobong.
1. Economizer
Economizer atau pemanas awal berfungsi untuk memanaskan air pengisi ketel sebelum masuk ke boiler. Pemanasan awal ini perlu yaitu untuk meningkatkan efisiensi ketel dan juga agar tidak terjadi perbedaan temperatur yang besar di dalam boiler yang dapat mengakibatkan keretakan dinding boiler.

2. Ruang bakar (furnace)
Ruang bakar adalah bagian dari boiler yang dindingnya terdiri dari pipa-pipa air. Pada sisi bagian depan terdapat sembilan burner yang letaknya terdiri atas 3 tingkat tersusun secara mendatar.

3. Dinding pipa (wall tube)
Merupakan dinding di dalam ruang bakar yang berfungsi sebagai tempat penguapan air. Dinding ini berupa pipa-pipa yang berisi air yang berderet secara vertikal.

4. Burner
Merupakan peralatan pembakar yang bahan bakarnya terbagi menjadi bagian-bagian kecil sehingga memudahkan proses pembakaran dengan udara. Bahan bakar HSD (High Speed Diesel) dipergunakan untuk pembakaran awal. Sedangkan bahan bakar utamanya adalah residu.
Penyalaan burner tergantung pada beban beban dari unit. Burner Management System (BMS) adalah penyaluran konfigurasi penyalaan burner pada saat start up atau shut down dan load change. Jumlah burner yang menyala atau mati tergantung pada beban generator yang sebanding dengan kapasitas bahan bakar untuk memproduksi uap pada boiler. Konfigurasinya diatur supaya pemanasan dalam ruang bakar merata dan efisien. Penyalaan boiler yang tidak seimbang dengan beban generator dapat mengakibatkan tidak stabilnya tekanan dan temperatur uap.

5. Steam drum
Steam drum adalah alat pada boiler yang berfungsi untuk menampung feed water dalam pembuatan uap yang temperaturnya cukup tinggi dan berupa campuran air dan uap. Di dalam steam drum terdapat peralatan pemisah uap. Campuaran feed water dan uap mengalir mengikuti bentuk separator sehingga uap air pada campuran akan jatuh dan masuk ke saluaran primary dan seconadry superheater. Uap yang telah dipisahkan oleh separator masuk ke cevron dryers. Disini uap mengalami pemisahan yang terakhir sehingga didapat uap jenuh. Air yang jatuh dialirkan ke bagian bawah dari drum secara gravitasi dan mengalir ke dalam tempat penampungan kemudian keluar melalui down corner dan uap jenuh akan keluar dari dry box.

2. Turbin uap
Turbin uap berfungsi untuk merubah energi panas yang terkandung dalam uap menjadi gerakan memutar (putaran). Uap dengan tekanan dan temperatur tinggi diarahkan untuk mendorong sudu-sudu turbin yang dipasang pada poros sehingga poros turbin berputar. Akibat melakukan kerja di turbin tekanan dan temperatur uap keluar turbin turun hingga hingga menjadi uap basah. Uap ini kemudian dialirkan ke kondensor, sedangkan tenaga putar yang dihasilkan digunakan untuk memutar generator. Saat ini hampir semua mesin turbin uap adalah dari jenis turbine condensing atau uap keluar turbin (exhaust steam) dialirkan ke kondensor.
Turbin uap
3. Kondensor
Kondensor adalah peralatan untuk merubah uap menjadi air. Proses perubahan nya dilakukan dengan cara mengalirkan uap kedalam suatu ruangan yang berisi pipa-pipa (tubes). Uap mengalir diluar pipa-pipa sedangkan air sebagai pendingin mengalir didalam pipa-pipa. Kondensor seperti ini disebut surface (tubes) condenser. Sebagai pendingin digunakan air sungai atau air laut.
Laju perpindahan panas tergantung pada aliran air pendingin, kebersihan pipa-pipa dan perbedaan temperatur antara uap dan air pendingin. Proses perubahan uap menjadi air terjadi pada tekanan dan temperatur jenuh, dalam hal ini kondensor berada pada kondisi vakum. Karena temperatur air pendingin sama dengan temperatur udara luar, maka temperatur air kondensat nya maksimum mendekati temperatur udara luar. Apabila laju perpindahan panas terganggu, maka akan berpengaruh terhadap tekanan dan temperatur.

C.Transformator Tenaga
Transformator tenaga adalah suatu peralatan tenaga listrik yang berfungsi untuk menyalurka tenaga/daya listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya. Dalam sistem PLTU unit III terdapat tiga macam transformator, yaitu :

1. MAT (Main Auxiliary Transformer)
MAT adalah trafo utama untuk pemakaian sendiri yang dipasang paralel dengan trafo generator, berfungsi untuk menurunkan tegangan pembangkitan 18 KV menjadi 4.16 KV. Pada saat sistem keadaan normal seluruh kebutuhan tenaga listrik untuk peralatan listrik maupun penerangan disuplai oleh trafo ini.

2. RAT (Reserve Auxiliary Transformer)
PLTU Unit III mempunyai 2 set trafo cadangan yang diparalelkan. Bila generator mengalami gangguan atau over houl sehiungga trafo utama tidak berfungsi maka daya listrik untuk start-up pembangkit unit III disuplai dari bus 150 KV melalui trafo cadangan ini. Jadi trafo ini menurunkan tegangan dari 150 KV menjadi 4160 V.

3. Trafo generator (Generator Transformer)
Trafo generator berfungsi menaikkan tegangan pembangkitan 18 KV memjadi 150 KV yang di pasok pada bus A dan B 150 KV yang berhubungan langsung dengan saluran transmisi, pada system interkoneksi se Jawa.

Bagian-bagian Transformator

a. Peralatan Utama
1. Inti Besi
Berfungsi untuk mempermudah jalan fluksi, yang ditimbulkan oleh arus listrik yang melalui kumparan. Dibuat dari lempengan-lempengan besi tipis yang berisolasi, untuk mengurangi panas (sebagai rugi-rugi besi) yang ditimbulkan oleh Eddy Current.

2. Kumparan Transformator
Adalah beberapa lilitan kawat berisolasi yang membentuk suatu kumparan. Kumparan tersebut terdiri dari kumparan primer dan kumparan sekunder yang diisolasi baik terhadap inti besi maupun terhadap antar kumparan dengan isolasi padat seperti karton, pertinak dan lain-lain. Kumparan tersebut sebagai alat transformasi tegangan dan arus.

3. Minyak Transformator
Sebagian besar kumparan-kumparan dan inti trafo tenaga direndam dalam minyak trafo, terutama trafo-trafo tenaga yang berkapasitas besar, karena minyak trafo mempunyai sifat sebagai isolasi dan media pemindah, sehingga minyak trafo tersebut berfungsi sebagai media pendingin dan isolasi.

4. Bushing
Hubungan antara kumparan trafo ke jaringan luar melalui sebuah bushing yaitu sebuah konduktor yang diselubungi oleh isolator, yang sekaligus berfungsi sebagai penyekat antar konduktor tersebut dengan tangki trafo.

5. Tangki-Konservator
Pada umumnya bagian-bagian dari trafo yang terendam minyak trafo berada (ditempatkan) dalam tangki. Untuk menampung pemuaian minyak trafo, tangki dilengkapi dengan konservator.

b. Peralatan Bantu
1. Pendingin
Pada inti besi dan kumparan-kumparan akan timbul panas akibat rugi-rugi besi dan rugi-rugi tembaga. Bila panas tersebut mengakibatkan kenaikan suhu yang berlebihan, akan merusak isolasi (di dalam transformator). Maka untuk mengurangi kenaikan suhu transformator yang berlebihan maka perlu dilengkapi dengan alat/system pendingin untuk menyalurkan panas keluar transformator.
Pada cara alamiah (natural), pengaliran media sebagai akibat adanya perbedaan suhu media dan untuk mempercepat perpindahan panas dari media tersebut ke udara luar diperlukan bidang perpindahan panas yang lebih luas antara media (minyak-udara/gas), dengan cara melengkapi transformator dengan sirip-sirip (Radiator).

2. Tap Changer (Perubah Tap)
Tap Changer adalah alat perubah perbandingan transformasi untuk mendapatkan tegangan operasi sekunder yang lebih baik (diinginkan) dari tegangan jaringan/ primer yang berubah-ubah. Tap changer yamg hanya beroperasi untuk memindahkan tap transformator dalam keadaan tidak berbedan disebut ‘’Off Load Tap Changer’’ dan hanya dapat dioperasikan manual.Transformator Generator, MAT, RAT mempunyai pengubah tap tanpa beban.

3. Alat Pernapasan (Silicagel)
Karena pengaruh naik turunnya beban transformator maupun suhu udara luar, maka suhu minyak pun akan berubah-ubah mengikuti keadaan tersebut. Bila suhu minyak tinggi, minyak akan memuai dan mendesak udara di atas permukaan minyak keluar dari tangki, senaliknya apabila suhu minyak turun, minyak menyusut maka udara luar akan masuk ke dalam tangki. Kedua proses di atas disebut pernapasan transformator.
Akibat pernapasan transformator tersebut maka permukaan minyak akan selalu bersinggungan dengan udara luar. Udara luar yang lembab akan menurunkan nilao tegangan tembus minyak transformator, maka untuk mencegah hal tersebut, pada ujung pipa penghubung udara luar dilengkapi dengan alat pernapasan, berupa tabung kaca berisi kristal zat hygroskopisn sehingga dapat dilihat warnanya.

4. Indikator
Untuk mengawasi selama transformator beroperasi, maka perlu adanya indikator pada transformator sebagai berikut :
- Indikator suhu minyak
- Indikator permukaan minyak
- Indikator sistem pendingin
- Indikator kedudukan tap
- Dan sebagainya

c. Peralatan Proteksi
1. Rele Bucholz
Rele bucholz alat/rele untuk mendeteksi dan mengamankan terhadap gangguan di dalam transformator yang menimbulkan gas.

2. Pengaman Tekanan Lebih
(Explosive Membrane/Pressure-Relief Vent) Alat ini berupa membrane yang dibuat dari kaca, plastik, tembaga atau katup berpegas, berfungsi sebagai pengaman tangki transformator terhadap kenaikan tekanan gas yang timbul di dalam tangki (yang akan pecah pada tekanan tertentu) dan kekuatannya lebih rendah dari kekuatan tangki transformator.

3. Rela Tekanan Lebih (Sudden Pressure Relay)
Rele ini berfungsi hampir sama seperti rele burcholz, yakni pengaman terhadap gangguan di dalam transformator. Bedanya rele ini hanya bekerja oleh kenaikan tekanan gas yang tiba-tiba dan langsung menjatuhkan PMT.

4. Rela Differensial
Berfungsi mengamankan transformator dari gangguan di dalam transformator antar lain, Flash Over antara kumparan dengan kumparan atau kumparan dengan tangki atau belitan dengan belitan di dalam kumparan ataupun beda kumparan.

5. Rele Arus Lebih
Berfungsi mengamankan transformatro dari arus yang melebihi dari arus yang telah diperkenankan lewat dari transformator tersebut dan arus lebih ini dapat terjadi oleh karena beban lebih atau gangguan hubung singkat.

6. Rele Tangki Tanah
Berfungsi untuk mengamankan transformator bila ada hubung singkat antara bagian yang bertegangan dengan bagian yang tidak bertegangan pada transformator.

7. Rele Hubung Tanah
Berfungsi untuk mengamankan transformator bila terjadi gangguan satu phasa ke tanah.

8. Relay Termis
Berfungsi untuk mencegah atau mengamankan transformator dari kerusakan isolasi kumparan, akibata adanya panas lebih yang ditimbylkan akibat arus lebih. Besarnya yang diukur di dalam rele ini adalah kenaikan temperatur.

d. Peralatan Tambahan Untuk Pengaman Transformator
Pemadam kebakaran (transformator-transformator besar) Sistem pemadam kebakaran yang modern pada transformator saat sekarang sudah sangat diperlukan. Fungsi yang penting untuk mencegah terbakarnya trafo. Penyebab trafo terbakar adalah karena gangguan hubung singkat pada sisi sekunder sehingga pada trafo akan mengalir arus maksimumnya. Jika proses tersebut berlangsung cukup lama karena rele tidak operasi dan tidak operasinya rele juga sebagai akibat salah menyetel waktu pembukaan PMT, rele rusak, dan sumber DC yang tidak ada serta kerusakan wiring.

D. Prinsip Kerja PLTU
Siklus PLTU ini adalah siklus tertutup (close cycle) yang idealnya tidak memerlukan lagi air jika memang kondisinya sudah mencukupi. Tetapi kenyataannya masih diperlukan banyak air penambah setiap hari. Hal ini mengindikasikan banyak sekali kebocoran di pipa-pipa saluran air maupun uap di dalam sebuah PLTU.
Untuk menjaga siklus tetap berjalan, maka untuk menutupi kekurangan air dalam siklus akibat kebocoran, hotwell selalu ditambah air sesuai kebutuhannya dari air yang berasal dari demineralized tank.
Secara sederhana, siklus PLTU digambarkan sebagai berikut :
Prinsip Kerja PLTU
1. Pertama-tama air demin ini berada disebuah tempat bernama Hotwell.

2. Dari Hotwell, air mengalir menuju Condensate Pump untuk kemudian dipompakan menuju LP Heater (Low Pressure Heater) yang pungsinya untuk menghangatkan tahap pertama. Lokasi hotwell dan condensate pump terletak di lantai paling dasar dari pembangkit atau biasa disebut Ground Floor. Selanjutnya air mengalir masuk ke Deaerator.

3. Di dearator air akan mengalami proses pelepasan ion-ion mineral yang masih tersisa di air dan tidak diperlukan seperti Oksigen dan lainnya. Bisa pula dikatakan deaerator memiliki pungsi untuk menghilangkan buble/balon yang biasa terdapat pada permukaan air. Agar proses pelepasan ini berlangsung sempurna, suhu air harus memenuhi suhu yang disyaratkan. Oleh karena itulah selama perjalanan menuju Dearator, air mengalamai beberapa proses pemanasan oleh peralatan yang disebut LP Heater. Letak dearator berada di lantai atas (tetapi bukan yang paling atas). Sebagai ilustrasi di PLTU Muara Karang unit 4, dearator terletak di lantai 5 dari 7 lantai yang ada.

4. Dari dearator, air turun kembali ke Ground Floor. Sesampainya di Ground Floor, air langsung dipompakan oleh Boiler Feed Pump/BFP (Pompa air pengisi) menuju Boiler atau tempat “memasak” air. Bisa dibayangkan Boiler ini seperti drum, tetapi drum berukuran raksasa. Air yang dipompakan ini adalah air yang bertekanan tinggi, karena itu syarat agar uap yang dihasilkan juga bertekanan tinggi. Karena itulah konstruksi PLTU membuat dearator berada di lantai atas dan BFP berada di lantai dasar. Karena dengan meluncurnya air dari ketinggian membuat air menjadi bertekanan tinggi.

5. Sebelum masuk ke Boiler untuk “direbus”, lagi-lagi air mengalami beberapa proses pemanasan di HP Heater (High Pressure Heater). Setelah itu barulah air masuk boiler yang letaknya berada dilantai atas.

6. Didalam Boiler inilah terjadi proses memasak air untuk menghasilkan uap. Proses ini memerlukan api yang pada umumnya menggunakan batubara sebagai bahan dasar pembakaran dengan dibantu oleh udara dari FD Fan (Force Draft Fan) dan pelumas yang berasal dari Fuel Oil tank.

7. Bahan bakar dipompakan kedalam boiler melalui Fuel oil Pump. Bahan bakar PLTU bermacam-macam. Ada yang menggunakan minyak, minyak dan gas atau istilahnya dual firing dan batubara.

8. Sedangkan udara diproduksi oleh Force Draft Fan (FD Fan). FD Fan mengambil udara luar untuk membantu proses pembakaran di boiler. Dalam perjalananya menuju boiler, udara tersebut dinaikkan suhunya oleh air heater (pemanas udara) agar proses pembakaran bisa terjadi di boiler.

9. Kembali ke siklus air. Setelah terjadi pembakaran, air mulai berubah wujud menjadi uap. Namun uap hasil pembakaran ini belum layak untuk memutar turbin, karena masih berupa uap jenuh atau uap yang masih mengandung kadar air. Kadar air ini berbahaya bagi turbin, karena dengan putaran hingga 3000 rpm, setitik air sanggup untuk membuat sudu-sudu turbin menjadi terkikis.

10. Untuk menghilangkan kadar air itu, uap jenuh tersebut di keringkan di super heater sehingga uap yang dihasilkan menjadi uap kering. Uap kering ini yang digunakan untuk memutar turbin.

11. Ketika Turbin berhasil berputar berputar maka secara otomastis generator akan berputar, karena antara turbin dan generator berada pada satu poros. Generator inilah yang menghasilkan energi listrik.

12. Pada generator terdapat medan magnet raksasa. Perputaran generator menghasilkan beda potensial pada magnet tersebut. Beda potensial inilah cikal bakal energi listrik.

13. Energi listrik itu dikirimkan ke trafo untuk dirubah tegangannya dan kemudian disalurkan melalui saluran transmisi PLN.

14. Uap kering yang digunakan untuk memutar turbin akan turun kembali ke lantai dasar. Uap tersebut mengalami proses kondensasi didalam kondensor sehingga pada akhirnya berubah wujud kembali menjadi air dan masuk kedalam hotwell.

E. Sistem-Sistem Yang Terdapat Pada PLTU
Sistem-Sistem Yang Terdapat Pada PLTU

Pada prinsipnya PLTU mempunyai system/siklus aliran, yaitu:
1. Sistem Air Pendingin
Air laut, sebelum masuk ke bak Water Intake (1), melalui bar screen dan terlebih dahulu disemprot dengan larutan Chlorine dari Chloropac yang untuk melemahkan binatang-binatang laut. Melalui travelling screen (berfungsi sebagai pembersih kotoran yang mungkin terbawa masuk ke dalam bak penampungan), air dipompa oleh CWP (2) yang berada di Water Intake– melalui Pressure Tunnel (3) menuju Condenser (4)–untuk mendinginkan uap bekas melalui pipapipa masuk/keluar Kondensor dan selanjutnya dibuang lagi ke laut melalui outlet tunnel (5).

2. Sistem Air dan Uap
Air kondensat dari Condenser (4) dipompa oleh Condensate Pump (6)–melalui Low Pressure Heater I (7) dan Low Pressure Heater II (8) guna menaikkan temperatur air kondensat yang menuju ke Deaerator (9)–untuk proses pembuangan O2 yang terkandung dalam air kondensat, dengan sistem penyemprotan uap yang diambil dari Extraction Steam Turbin. Boiler Feed Pump (10) berfungsi memompa air dari Deaerator, melalui High Pressure Heater I (11) dan High Pressure Heater II (12),untuk menaikkan temperatur air Feed Pump menuju Steam Drum (13). Dari sini, air lalu didistribusikan ke seluruh pipa Water Wall (14) untuk proses pemanasan dalam Boiler hingga mencapai temperatur dan tekanan yang sesuai kebutuhanmelalui Super Heater (15) menuju Steam Line (16) untuk memutar sudu-sudu Turbin (17). Sebagian uap bekas untuk pemanas Low Pressure Heater dan Deaerator serta High Pressure Heater yang telah berekspansi tersebut, kemudian diembunkan menjadi air kondensat dalam Kondensor dan ditampung dalam Condensate Tank.

3. Sistem Bahan Bakar
Bahan bakar berupa residu/MFO dari Bunker Pertamina dipompakan ke Tangki Persediaan PLTU - dengan pompa Main Fuel Oil Pump (18) melalui Heater Set (19) yang berfungsi menaikkan temperaturnya untuk memudahkan proses pengabutan bahan bakar di Burner (20) dalam ruang bakar Boiler (21) yang berjumlah 6 buah. Penggunaannya disesuaikan dengan kebutuhan uap yang dibutuhkan dalam sistem.

4. Sistem Udara Pembakaran
Dalam proses pembakaran, udara luar yang dihasilkan oleh kipas tekan paksa Force Draught Fan (22) terlebih dahulu melalui Air Heater (23) dan Wind Box (24) yang selanjutnya menuju ruang bakar. Dalam Air Heater sendiri sudah terjadi proses pemanasan yang dihasilkan dari gas bekas hasil pembakaran Boiler. Akan terjadi proses tukar temperatur dalam ruang Air Heater. Selanjutnya, udara bekas pembakaran langsung dibuang ke atmosfer melalui cerobong/Stack (25).

5. Sistem Penyaluran Tenaga Listrik
Putaran turbin uap yang dikopling dengan poros Generator (26) akan menghasilkan tenaga listrik; yang sebagian dipakai untuk pemakaian sendiri melalui Auxiliary Transformer (27), sedangkan selebihnya dinaikkan tegangannya sesuai kebutuhan dengan Trafo Utama/Main Transformer (28). Selanjutnya, tenaga listrik tersebut dihubungkan oleh PMT/Breaker (29) ke Switch Yard yang paralel dengan transmisi.

6. Sistem Air Penambah
Di dalam sistem air dan uap tentu ada beberapa kebocoran sehingga diperlukan penambahan untuk memenuhi kebutuhan. PLTU Perak Unit 3 dan 4 telah dilengkapi dengan sistem pembuatan air penambah dengan:
a. Sistem Flash Evaporator (30) yang berfungsi mengubah air laut menjadi air sulingan dalam Flash Evaporator. Media yang digunakan untuk air pemanas diambil dari uap bekas turbin (Extraction). Air sulingan tersebut lalu dipompa lagi melalui Distillate Pump menuju Raw Water Tank (32) ditambah dari PIT (PDAM) (31) serta masih dilengkapi dengan saluran pembuangan otomatis sebagai pengaman. Jika terjadi konduktifitas tinggi, maka air sulingan tersebut langsung terbuang secara otomatis.
b. Sistem Demi-Plant (33) untuk memurnikan air penambah dan menampungnya dalam Demi-Tank (34) yang kemudian bisa digunakan sesuai kebutuhan dalam unit melalui Make-up pump.

DAFTAR PUSTAKA
Elektro Indonesia VI/35 (Februari 2001)
Energi, Abdul Kadir, UI- Pers, Jakarta, 1995.
Ketenagalistrikan Indonesia, Zuhal, PT. Ganeca Prima, Jakarta, April 1995.

share this article to: Facebook Twitter Google+ Linkedin Technorati Digg

Ditulis Oleh : Ahmad ~ Sekedar Posting

AHMAD Sobat sedang membaca artikel tentang Pembangkit Listrik Tenaga Uap (PLTU) . Sobat diperbolehkan mengcopy paste atau menyebar-luaskan artikel ini, namun jangan lupa untuk meletakkan link dibawah ini sebagai sumbernya.

:: About Me ! ::

Posted by Ahmad, Published at Monday, January 27, 2014 and have 3 comments

3 comments

km yg magang d asam" smlm lah

Perkenalkan saya Fabian, siap membantu Bapak/Ibu yang sedang membutuhkan Transformator/Trafo baik spesifikasi standart maupun custom dengan brand Trafindo. untuk lebih jelasnya silahkan hubungi Fabian melalui Tlp atau WA di 081 5874 9433.

Terima kasih telah berkunjung, Silahkan Sobat tinggalkan komentar dengan kata-kata yang Baik, Bijak dan Sopan.